8 research outputs found

    From MFN to SFN: Performance Prediction Through Machine Learning

    Get PDF
    In the last decade, the transition of digital terrestrial television (DTT) systems from multi-frequency networks (MFNs) to single-frequency networks (SFNs) has become a reality. SFN offers multiple advantages concerning MFN, such as more efficient management of the radioelectric spectrum, homogenizing the network parameters, and a potential SFN gain. However, the transition process can be cumbersome for operators due to the multiple measurement campaigns and required finetuning of the final SFN system to ensure the desired quality of service. To avoid time-consuming field measurements and reduce the costs associated with the SFN implementation, this paper aims to predict the performance of an SFN system from the legacy MFN and position data through machine learning (ML) algorithms. It is proposed a ML concatenated structure based on classification and regression to predict SFN electric-field strength, modulation error ratio, and gain. The model's training and test process are performed with a dataset from an SFN/MFN trial in Ghent, Belgium. Multiple algorithms have been tuned and compared to extract the data patterns and select the most accurate algorithms. The best performance to predict the SFN electric-field strength is obtained with a coefficient of determination (R2) of 0.93, modulation error ratio of 0.98, and SFN gain of 0.89 starting from MFN parameters and position data. The proposed method allows classifying the data points according to positive or negative SFN gain with an accuracy of 0.97

    Perivascular Expression and Potent Vasoconstrictor Effect of Dynorphin A in Cerebral Arteries

    Get PDF
    BACKGROUND: Numerous literary data indicate that dynorphin A (DYN-A) has a significant impact on cerebral circulation, especially under pathophysiological conditions, but its potential direct influence on the tone of cerebral vessels is obscure. The aim of the present study was threefold: 1) to clarify if DYN-A is present in cerebral vessels, 2) to determine if it exerts any direct effect on cerebrovascular tone, and if so, 3) to analyze the role of κ-opiate receptors in mediating the effect. METHODOLOGY/PRINCIPAL FINDINGS: Immunohistochemical analysis revealed the expression of DYN-A in perivascular nerves of rat pial arteries as well as in both rat and human intraparenchymal vessels of the cerebral cortex. In isolated rat basilar and middle cerebral arteries (BAs and MCAs) DYN-A (1-13) and DYN-A (1-17) but not DYN-A (1-8) or dynorphin B (DYN-B) induced strong vasoconstriction in micromolar concentrations. The maximal effects, compared to a reference contraction induced by 124 mM K(+), were 115±6% and 104±10% in BAs and 113±3% and 125±9% in MCAs for 10 µM of DYN-A (1-13) and DYN-A (1-17), respectively. The vasoconstrictor effects of DYN-A (1-13) could be inhibited but not abolished by both the κ-opiate receptor antagonist nor-Binaltorphimine dihydrochloride (NORBI) and blockade of G(i/o)-protein mediated signaling by pertussis toxin. Finally, des-Tyr(1) DYN-A (2-13), which reportedly fails to activate κ-opiate receptors, induced vasoconstriction of 45±11% in BAs and 50±5% in MCAs at 10 µM, which effects were resistant to NORBI. CONCLUSION/SIGNIFICANCE: DYN-A is present in rat and human cerebral perivascular nerves and induces sustained contraction of rat cerebral arteries. This vasoconstrictor effect is only partly mediated by κ-opiate receptors and heterotrimeric G(i/o)-proteins. To our knowledge our present findings are the first to indicate that DYN-A has a direct cerebral vasoconstrictor effect and that a dynorphin-induced vascular action may be, at least in part, independent of κ-opiate receptors

    Right ventricular function in patients with pulmonary hypertension ; the value of myocardial performance index measured by tissue Doppler imaging

    No full text
    Published on behalf of the European Society of Cardiology. © All rights reserved. & The Author 2010. For permissions please email: [email protected]: Myocardial performance index (MPI) measured by conventional Doppler is routinely used to assess right ventricular (RV) systolic function in patients with pulmonary hypertension (PH). Our aim was to determine whether MPI measured by Doppler tissue imaging (tMPI) is effective in assessing RV function in these patients. Methods and results: Retrospectively, we have studied 196 patients with chronic PH [pulmonary arterial systolic pressure (PASP) 81 +/- 40 mmHg] and 37 healthy volunteers (PASP of 27 +/- 7 mmHg). According to the exclusion criteria, 172 patients were included in the final study cohort. All patients were evaluated for RV systolic function by different parameters. MPI was measured by both conventional and tissue Doppler imaging. Bland-Altman analysis showed moderate agreement between MPI and tMPI (the mean difference was -0.02, absolute difference = -0.32 to 0.29; 95% intervals of agreement, percentage of average = -46.6 to 40.8%). In 50 consecutive PH patients where additional parameters were calculated, we found a significant correlation between tMPI and RV ejection fraction (r = -0.73, P< 0.0001) and RV fractional area change (r = -0.58, P< 0.0001). No significant inter- and intra-observer variability was identified. Conclusion: This study demonstrated a moderate agreement between two methods of measuring MPI. A good correlation of tMPI with RV ejection fraction and RV fractional area change was found indicating that tMPI might be superior to MPI Doppler. tMPI is a parameter unaffected by RV geometry and importantly has the advantage of simultaneously recording the time intervals from the same cardiac cycle.info:eu-repo/semantics/publishedVersio

    Role of endocannabinoids and cannabinoid-1 receptors in cerebrocortical blood flow regulation

    Get PDF
    BACKGROUND: Endocannabinoids are among the most intensively studied lipid mediators of cardiovascular functions. In the present study the effects of decreased and increased activity of the endocannabinoid system (achieved by cannabinoid-1 (CB1) receptor blockade and inhibition of cannabinoid reuptake, respectively) on the systemic and cerebral circulation were analyzed under steady-state physiological conditions and during hypoxia and hypercapnia (H/H). METHODOLOGY/PRINCIPAL FINDINGS: In anesthetized spontaneously ventilating rats the CB1-receptor antagonist/inverse agonist AM-251 (10 mg/kg, i.v.) failed to influence blood pressure (BP), cerebrocortical blood flow (CoBF, measured by laser-Doppler flowmetry) or arterial blood gas levels. In contrast, the putative cannabinoid reuptake inhibitor AM-404 (10 mg/kg, i.v.) induced triphasic responses, some of which could be blocked by AM-251. Hypertension during phase I was resistant to AM-251, whereas the concomitant CoBF-increase was attenuated. In contrast, hypotension during phase III was sensitive to AM-251, whereas the concomitant CoBF-decrease was not. Therefore, CoBF autoregulation appeared to shift towards higher BP levels after CB1-blockade. During phase II H/H developed due to respiratory depression, which could be inhibited by AM-251. Interestingly, however, the concomitant rise in CoBF remained unchanged after AM-251, indicating that CB1-blockade potentially enhanced the reactivity of the CoBF to H/H. In accordance with this hypothesis, AM-251 induced a significant enhancement of the CoBF responses during controlled stepwise H/H. CONCLUSION/SIGNIFICANCE: Under resting physiological conditions CB1-receptor mediated mechanisms appear to have limited influence on systemic or cerebral circulation. Enhancement of endocannabinoid levels, however, induces transient CB1-independent hypertension and sustained CB1-mediated hypotension. Furthermore, enhanced endocannabinoid activity results in respiratory depression in a CB1-dependent manner. Finally, our data indicate for the first time the involvement of the endocannabinoid system and CB1-receptors in the regulation of the cerebral circulation during H/H and also raise the possibility of their contribution to the autoregulation of CoBF

    Poster session 4: Friday 5 December 2014, 08:30-12:30Location: Poster area.

    No full text
    corecore